
N90-27327

VIP: A Knowledge-Based Design

Engineering

of Space Systems

Aid for the

Steven M. Lewis and Kirstie L. Bellman
Computer Science Laboratory,
The Aerospace Corporation

Los Angeles, CA 90009-2957

Abstract

This paper describes the Vehicles Implementation Project (VIP), a knowledge-
based design aid for the engineering of space systems. VIP combines qualitative knowledge
in the form of rules, quantitative knowledge in the form of equations, and other
mathematical modeling tools. The system allows users rapidly to develop and experiment
with models of spacecraft system designs. As information becomes available to the
system, appropriate equations are solved symbolically and the results are displayed.
Users may browse through the system, observing dependencies and the effects of altering
specific parameters. The system can also suggest approaches to the derivation of specific
parameter values.

In addition to providing a tool for the development of specific designs, VIP aims at
increasing the user's understanding of the design process. Users may rapidly examine the
sensitivity of a given parameter to others in the system and perform tradeoffs or
optimizations of specific parameters. A second major goal of VIP is to integrate the
existing corporate knowledge base of models and rules into a central, symbolic form.

Introduction

VIP is a portion of Vehicles, a long-term research effort on the part of The
Aerospace Corporation to develop artificial-intelligence tools for the conceptual design of
spacecraft and other systems. Currently, much of the knowledge and tools used for such
design are scattered throughout the corporation. The tools, while sophisticated, are often
poorly documented and require a detailed knowledge of the tool itself, as well as of the
system under consideration; in order to use the current tools effectively, the user of a
model of spacecraft batteries needs a detailed knowledge of both the model as well as
batteries. Complex and detailed setup procedures and relatively rigid structures often
discourage engineers from examining alternative choices. This complexity precludes
planners from using many of the existing models in the early stages of a system's design.

As older engineers retire and younger people enter the organization, a major
problem has arisen regarding the maintainability of existing tools. Too often,
organizations find themselves dependent on sophisticated tools that were developed by
personnel no longer with the organization. These tools become difficult to maintain and,
without the experts who developed the package, equally difficult to rewrite. A long-term
goal is to reorganize the corporate knowledge base to make it more accessible and
maintainable. Vehicles is an attempt to develop tools that allow engineers to concentrate
on the rules and equations of a model, while leaving to a central system the details of
implementation, solution, and interface. The hope is that models will be translated into a
central, easily represented and documented form that can be useful to both experienced
and casual users.

497

An object within the system, e.g. a frame or a slot, consists essentially of two
parts, a class and a specific instance. The class holds information that is common to all
instances. For example, a spacecraft may have multiple antennas. Each instance points to
a common frame, of the class antenna. Within this class there is a slot that holds the
antenna's diameter. The slot points to a template that holds common information: name,
default values, limits, definitions, and default print units. The instance holds information
specific to one frame: the value, the default print units, information about how the value
was derived, and any user-supplied annotation. Similarly, relationships such as
equations also exist in two forms: a template attached to the frame template, and a
specific instance in which variable names are replaced by pointers to the variable
instances.

Actions

All actions in the system are initiated by the user. Three basic user actions are
possible: (1) The user may enter a value for an attribute, (2) the user may add a new
subsystem to the design, or (3) the user may request a view of the current state of the
design. When the user enters a new value, the effects of that change throughout the
system are handled by the propagator.

The Propagator

When a new value is entered by the user, that value is tested against the limits
imposed by the attribute template. If acceptable, the new value is passed to the
relationships that are attached to that slot. Equations may be solved for any unknown;
however, equations are reorganized and solved for a particular unknown only when all
other unknowns have acquired values. Once an equation is solved for a given variable,
subsequent changes in the independent parameters are automatically propagated through
the equation to change the derived value. The derived value may be altered bythe user in
two ways. First, one of the independent values may be set to UNKNOWN; this causes the
solution of the equation to be retracted and the equation to revert to a state of having two
unknown values. In that state, the assertion of a value for the previously derived
parameter causes the equation to be solved for the retracted value.

A second means of setting the value of a derived parameter is available under the
tradeoff view. The system of equations in the model is repeatedly solved for differing
values of an independent parameter. The resultant values of the dependent parameter are
collected and displayed as an x,y graph showing how the independent parameter varies
with the dependent parameter. The user may then use the mouse to select a value of the
independent parameter that results in the desired value of the derived parameter. We
prefer this latter approach because it preserves the causal ordering of derivation. That
is, we do not say that the cost of a spacecraft was determined by the cost of a subsystem,
but rather that the spacecraft's cost was determined by the weight of that subsystem,
whose weight was in turn selected to give a specific cost [Simon 84].

Views

VIP contains a set of tools that allow users to visualize data. These tools provide
the user with multiple views of a complex design. Different tools are available at the
design, subsystem, and attribute levels of the hierarchy. Tools at the design level allow
the user to visualize an overview of the components tree (Figure 3). Clicking on any
subsystem displays that subsystem.

498

Attribute-level tools allow users to view the properties of individual attributes.
These tools are accessed by clicking on the name of the attribute in the subsystem window
(Figure 4). Where the views are appropriate to the current value of the slot, a menu of
possible views is then displayed.

Choices Available for All Slots

• Information: This choice gives the definition of the item, tells how it was derived (if
a value is known), and displays all the slots that depend on that value as well as all slots
used to compute the value. In addition, any annotations are displayed. Information is
displayed in a locked, scrollable text window.

• Annotate: This choice allows the user to view and edit annotation related to a given

value. This is usually used to allow the user to add notes justifying his decision.

• How: If the item is set, this feature causes the system to tell how it is set, or, if unset,
how it might be set; if unset, this choice lists all rules and equations that could be used to
derive the item; if none exist, this choice tells the user that he must input a value for the
item, as there is no other way to derive one. Note that many of the equations in the
system normally use some items as inputs only, and thus may be inappropriate for
deriving these items. For example, the cost of a satellite is normally proportional to its
weight. It is rarely useful to suggest to the user that the satellite's weight could be
estimated if the cost were known.

Choices Available Only When Appropriate

• Sensitivity: This choice displays the sensitivity of a derived value to all parameters
used in its derivation. Each of the deriving parameters is varied by 5% of its current
value and the resultant effects on the dependent parameter are computed as numerical
derivatives. The derivatives are normalized as _log(y)/51og(x) [Landauer].

•Tradeoff: This choice allows users to visualize the effects on a derived value of altering

one parameter. Users select a parameter from a list of parameters used to derive the
current value. The system automatically varies the selected parameter over a selected
range and generates a graph showing the effects on the dependent parameter. Users may
select on the dependency graph a point that causes that combination to become the new
current values.

• Recommend: If a value is unknown but VIP can find a collection of equations based on

known parameters designated "usually user entered" or on values derived from the
above, this choice displays the potential dependency tree, highlighting the unknown
values and allowing the user to enter the remaining unknowns.

• Apportion: If the value is the sum of N terms, this choice displays the relative
importance of the additive terms as a pie chart.

Interface

A major feature of the philosophy underlying VlP is to enable users to interact
with the system in a simple and intuitive fashion. The interface consists of a collection
of windows; in the current implementation, only one window is displayed at a time. Some
of these windows are described below. The two basic windows are the subsystem

499

The Vehicles project has the long-range goal of developing new capabilities and
knowledge representations for supporting the conceptual design of spacecraft. VIP has the
more immediate goal of utilizing methods developed in this project to provide an
intelligent system that allows users to develop and manipulate space-system designs. To
make VIP widely available, we developed it for use on a personal workstation (the Apple
Macintosh II). This project has been concerned with developing a system that is simple
and user-friendly enough to shift much of the use and extension of the knowledge base
from the computer science lab to the working engineer.

VIP Architecture

The architecture of VIP follows a common practice in expert-system design, by
making a clear separation between the knowledge in the system and the procedures used to
manipulate that knowledge. VIP is divided into two basic parts -- an engine for
manipulating knowledge and user selections, and a collection of relevant knowledge
sources.

Figure 1 displays the architecture of VIP. The seven major components of the
engine are as follows:

• Knowledge Base: This stores general knowledge about the systems the user is
developing. Data from the knowledge base (currently stored as a series of textual files)
are parsed by the system into working code. Storing knowledge as text allows the user to
interact with easily understandable forms of the knowledge base, facilitating the reading,
editing, and correction of the data. The generated code is used by the system but is not
normally accessed by either users or developers. The knowledge base is described in
detail below.

• Knowledge Editor: This tool allows the knowledge base to be updated. Users
may add new subsystems, rules, or equations to the database. Knowledge that is added is
tested for syntax and consistency with the current contents of the database. The editor tags
each piece of information with the name of the person entering the knowledge, and
encourages users to attach annotation detailing the technical underpinnings of each item.

• Working Database: This stores current designs. Designs are represented as
frames that have slots containing information about parameter values, information about
component hierarchies, information about how parameter values were derived, and
user-supplied comments Designs in the working database may be created and
manipulated by the user. A design (for example, of a proposed spacecraft) may be stored
in the knowledge base, permitting future manipulation.

• Propagator: This tool accepts changes in parameter values. Any change in a
parameter's value is propagated through all constraints, rules, and equations in the
system.

• Report Generator: The tool generates a report on the current design. The
report is user-readable text formatted to allow VIP to read in the report, regenerating
the working design.

500

• Interface: VIP has a built-in user interface that allows users to browse and

alter information rapidly. The interface is described in detail below.

• Toolbox: A major component of the interface is the toolbox, which gives the
user a number of views into the data. The toolbox also allows users to read, add, alter, or

annotate any portion of the design.

Knowledge Base

The knowledge base stores four classes of information: templates, fixed systems,
historical designs, and working designs. These are described below.

Templates hold knowledge about how to generate specific elements of an object,
storing what is possible to know about a specific subsystem. Such information includes
possible parent systems, possible component systems, attribute names, equations, rules,
and constraints. Attribute templates store the type of attribute (if numeric), the type of
measurement (e.g. distance), and default units (e.g. km). The attribute template may also
store default values and upper and lower bounds. If an attribute involves a choice (e.g. a
choice of material), then the template holds all possible choices.

Fixed systems are instances of subsystems. As such the attributes are assigned
specific values. Fixed systems represent knowledge that may not be altered in the current
design. A communications band such as X-band would be considered as a fixed system that
holds the assignments for uplink and downlink frequencies, bandwidths, and the effects of
adverse weather on the signal. The choice of launch vehicle is another class of fixed
system that contains cost, availability, possible orbits, and throw weight.

Historical systems comprise data from complete systems that have already
been developed. Like fixed systems, they comprise read-only data. Historical systems
may be accessed to give the user perspective about what is possible. The system can
access the historical system most similar to the current design and, in the absence of
other information, can use parameter values from this system as defaults in the current
design.

Working designs are also complete systems. Unlike historical systems,
working designs may be modified.

The knowledge base is stored as a collection of textual files that hold information
as keyword, value pairs. Figure 2 shows a portion of the current knowledge base
describing a power subsystem. The current system parses these text files into Prolog
code; the files are then added to the working database as required.

Working Database

A design such as a spacecraft or space system may be considered as a hierarchical
frame system. The design is a root frame whose slots contain specific values called
attributes and frames called components. The component hierarchy may be visualized
as a tree (Figure 2). The design and all its components are a class of frame called a
subsystem. In addition to components and attributes, a subsystem has slots for
relationships: equations, rules, and constraints. All attributes and relationships are
attached to a specific subsystem frame. Relationships can link to attributes in other
frames; these links allow information to propagate through the design.

501

window, which gives a detailed view of a specific subsystem, and the navigation
window, which shows all subsystems as parts of a tree.

• Subsystem Window: The subsystem window (Figure 4) displays all the slot values
in a scrolling field. Each slot has four components: Name, Value, Units (if
applicable), and Source. The name is simply the name of the slot. Values may be strings,
numbers, or tuples. Every slot type points to code that generates an appropriate display
of the slot's contents. If these contents are undefined, a blank rectangle is displayed.
Numeric slots may have units associated with the slot's value. If these units are defined,
they are displayed next to the data. The source type is displayed as an icon at the right of
the slot. Currently, we support icons for user, default, equation, rule, and system
(copied from a predefined system, such as the throw weight of the shuttle).

Navigation Window

The navigation window (Figure 3) displays the components as a tree, with the
design at the root, various subsystems as the branches, and the components as the leaves.
The user may open a selected subsystem by clicking on the appropriate box. The tree
gives the user a sense of where the current system lies relative to the entire design. This
window enables the user to develop insight into the architecture of the design under
consideration. The navigation window also enables the user to move throughout the
design.

Dependency Window

The dependency window displays trees that are generated for an individual
parameter. Two possible trees can be derived. When the value of a parameter is derived,
the dependency tree shows the current dependencies; for example, cost was derived from
weight and availability, weight was derived from power and coverage, and coverage was
entered by the user. The leaves in the dependency tree represent default values as well as
values entered by the user. Dependency trees may be constructed for any derived
parameter. When a parameter has no value, a potential dependency tree can be generated
by seeking parameters that are noted as "usually user entered."

Other Windows

Other windows are generated to display graphical information, presented as an x,y
graph. The relative contribution of terms to a sum is presented as a pie graph, and the
sensitivity of a dependent parameter is presented along with its dependencies. Here the
derivatives are normalized as described above and are presented as a bar graph.

Hardware

The system is implemented on an Apple Macintosh II with 5 MB of memory and
using AAIS Prolog. A version runs on the Sun/3 under Quintus Prolog, but this version
does not have the full user interface that is available on the Mac. The system requires
approximately 2.5 MB of working memory.

Problems Studied

We have applied the system to a number of conceptual studies within the
corporation. For example, we have developed models for electrical power systems,

5O2

constellations of communications, and configurations for SDI-related designs. The most
complex models were able to handle 20 subsystems and approximately 100 equations.

In several cases the models were generated by engineers working directly with the
system, rather than by personnel within the Computer Science Laboratory. The success
of the system with relatively naive users was encouraging. The problems these people
commonly encountered (misspelling the names of system parameters or referring to
parameters not explicitly imported from the owning subsystem) have highlighted the
need to provide more tools to verify the input data, both syntactically and in terms on the
internal consistency of the generated model.

References

Bellman, K. and A. Gillam, "A knowledge-based approach to the conceptual design of space
systems," AI Papers 20, Proceedings of the Conference on AI and Simulation, 1988,
SCS International.

Landauer, C., "Sensitivity Analysis," Technical Report, The Aerospace Corporation (in
process).

Iwasaki, Y. and H. Simon, "Causality in Device Behavior," Artificial Intelligence 29:3-32
(1984).

Parsaye, K., M. Chignell, S. Khoshafian, and H. Wong, Intelligent Databases (Wiley, New
York, 1989).

Figure Captions

Figure 1. VIP Architecture

Figure 2. Navigation Window. The components of a design may be viewed as a tree. The
system highlights the currently active system. When this window is displayed,
clicking on any box causes that system to become active and displays a
subsystem window for that subsystem. This enable the user to change the active
subsystem.

Figure 3. Subsystem Window. The basic view of a subsystem, this window allows a user
to view and modify specific attributes. The Traverse button brings up the
navigation window. Clicking on the name of any attribute (e.g. Time_Delay)
pops up a menu of applicable tools for that attribute. Clicking on the value box
allows the user to type in a new value. If the attribute has only a fixed set of
alphanumeric values, clicking on the box pops up a menu of choices. The icon
indicates the source, and clicking on the icon displays information about how the
parameter was derived.

Figure 4. Knowledge Base. This section of the knowledge base illustrates how knowledge
is entered as keyword text. A major goal of VIP was to keep the working
knowledge base in a form that can be accessed and edited by the user.

503

Figure i

VIP Architecture

I WorkingKnowledge Parser

VIP Engine

Toolbox

I KnowledgelEditor I

I
Knowledge

base

I IReport

Interface _'_Generator

Solver I

Figure 2

Sample System Specification File

Note sections in bold italics are the designator. Remaining text is merely comrncnaar?'.

% power
%
% Begin Subsystem Sp_ification
%
subsystem power

possible parents buss % must be 2 subsystem of the buss
% designate possible components

possible components regulator solar_panel power_buss

%
% Begin Designating Attributes
%

attribute type choice solar._anel solar body nuclear solar_concentrator
default solar..panel

%
% Specify a numeric amibute
%

% name type units metric english

attribute eol_power numeric power watts watts
lower limit 100 watts
upper limit 5000 watts
what " eol._power is the end of life power. That is the power the power
system can deliver at the end of the design life of the spacecraft. Because
components in the system, specifically solar cells degrade over the
spacecraft lifetime, this will be significantly lower then the bol_power or
beginning of life power. Power systems are usually designed to deliver a
specific end of life power. "

504

attribute battery choice nicad nih lithium lead_acid

Figure 3 Navigation Window

dscsv

dscsv

I buss

q power I
aCS I

structure I

antO I

uplink

downlink

communi cati ons_band

_Ii_i!____i!_!i!i__iii_iIZ_!_i!i!i_ii_iiiii!iii!iii__!ii___!_!_i!i_iiii!i_ii_____i!ii__!_______i___iii!i!i__i iiiiii,i,!,i,iii.i,i,l,i.i.i,i,i,ii,i,l,i,(ii.i,ii!.i.i.i.U.ili

Figure 4 Subsystem Window

boost_kkw

[Traverse I I Undo] [Undo Choice j [Quit)

Time_Delay 30.0 sec

Time_Comm 40.0 sec

Pk_E ffecti ve 0.0250 ratio

Time_Postboost 200. sec

36.0
Abs ente e_R atio_B ratio

Time_Kkv_Flight [130. sec

8.0
Kkv_Per_Booster_B ratio

0.800
Boost_Leakage ratio

lO00.N_Boosters ratio

Weight [kg

e=mc 2

IEQN

D
OQ_liau_

C,--too _

E_IN

D
DQIa_lm

D
D Qlau]Lm

D
D QII_

@

505

